

Machine Translation of User Generated Content

Julia Epiphantseva

Head of Business Development

PROMT Technologies

PROMT Rule-Based Machine Translation (RBMT)

PROMT Statistical Machine Translation (SMT)

PROMT DeepHybrid Machine Translation (DH)

Rule-Based Machine Translation

> Benefits:

- more accurate syntax and morphology,
- deterministic and predictable,
- friendly for customization.

> Limitations:

- > language-dependent (algorithms depend on source/target languages),
- > high customization effort.
- > Available languages in PROMT rule-based engines:

English, Russian, German, French, Spanish, Italian, Portuguese, Chinese (Simplified and Traditional), Ukrainian, Kazakh, Turkish, Bulgarian, Latvian and Polish.

> Available Products: Desktop and Server solution.

Statistical Machine Translation

> Benefits:

- > more fluent and "human-like" MT output,
- ➤ language independent,
- > fast training.

> Limitations:

- > requires large and clean parallel corpora for training,
- domain-specific (usually trained on/for specific texts),
- > requires powerful servers (slow).
- > Available languages: language-independent.
- > Available Products: Server-based solutions only.

PROMT DeepHybrid Machine Translation

➤ PROMT DeepHybrid takes the best from both approaches:

> Benefits:

- > more fluent and "human-like" MT output than pure RBMT,
- > engine training is fully automated
- > engine training is faster than pure RBMT,
- > more customizable and predictable then pure SMT.

> Limitations:

- requires parallel corpora for training (but less than pure SMT),
- domain-specific (usually trained on/for specific texts).
- Available languages in PROMT DeepHybrid: English, Russian, German, French, Spanish, Italian, Portuguese, Chinese (Simplified and Traditional), Ukrainian, Kazakh, Turkish, Bulgarian, Latvian and Polish.
- > Available Products: Server-based solutions only.

User-generated content (UGC)

- produced by general public,
- available mostly on the Web via blogs and wikis,
- presented as daily news, encyclopedias, references, product or service reviews,
- important for social networking and eCommerce websites.

Could the output quality be improved through quick training?

UGC in linguistic aspect

- Similarity to oral content,
- Spelling errors,
- Grammar and Syntax errors,
- > Style of writing determined by cultural, linguistic, emotional features of authors.

Online services powered by PROMT

Span;shD!ct

Subtitles as training data

Advantages

- > available public (http://www.opensubtitles.org),
- ➤ large or suitable amounts,
- > spoken, modern language.

Disadvantages and risks

- > data quality,
- > compliance to the domain (traveling).

English-Spanish

Training data

- > Size
 - $\triangleright \approx 17$ M parallel segments (sentences)
 - ➤ ≈ 110 M English words

- Data processing and filtering
 - > normalizing punctuation, ligatures etc.
 - deleting duplicated, untranslated etc. segments

Test data

- Source
 - ➤ Traveler reviews and their Spanish human translations

- Size
 - ➤ 1 000 parallel segments
 - ➤ 15 500 English words

English-Russian

Training data

- Size
 - \gt ≈ 3,4 M parallel segments (sentences)
 - > ≈ 18 M English words

- Data processing and filtering
 - > normalizing punctuation, ligatures etc.
 - deleting duplicated, untranslated etc. segments

Test data

- Source
 - > Traveler reviews and their Russian human translations

- Size
 - ➤ 4 000 parallel segments
 - > 67 000 English words

Evaluation results

Bleu scores

English-Spanish English-Russian

34, 93 (RBMT) -> 38,58 (DH) 19,63 (RBMT)-> 19,06 (DH)

Expert evaluation for random 100 segments

English-Spanish English-Russian

 37% better
 17% better

 29% worse
 29% worse

 34% equal
 54% equal

Comparison of training data ES/ER

- Unknown words in English parts
 - > 0, 8% (ES)
 - > 1% (ER)

Similar percentage of known words.

- Target vocabulary (Spanish and Russian sample subcorpora of comparable size)
 - > 250 000 words (ES)

Much more word forms in Russian corpus than in Spanish.

> 500 000 words (ER)

Poorer quality of Russian subcorpus than of Spanish (spelling errors).

- Expert evaluation of parallel subcorpora (500 random segments)
 - > 9% alignment mistakes and 9% bad quality of "human" translation (ES)
 - > 18% alignment mistakes and 15% bad quality of "human" translation (ER)

Poorer quality of English-Russian corpus than of English-Spanish (alignment/human translation).

Additional researches

- More language pairs taken into consideration
 - > English-French,
 - English-German,
 - > English-Portuguese.
- Additional cleaning for training data
 - deletion of throw line marks at the beginning of segments,
 - > validation of source-target sentences according to their length (1:1,5).
 - > Evaluation metrics
 - Expert evaluation
 - Language Model-based metric

Evaluation

Expert evaluation for random 100 segments

English-French

English-German

37% better 29% worse 34% equal

28% better 20% worse 52% equal

PPL Calculation

Source language, EN	Language pair, EN-X	PPL	
		RBMT	DeepHybrid
Test set 1	Ru	13,27832744	12,86219585
	De	12,03040652	12,00196488
	Fr	9,59409939	9,66119920
	Sp	10,70418755	10,26608915
	Pt	14,20773211	13,42763669
Test set 2	Ru	13,60735447	13,40023467
	De	13,34224365	13,32577337
	Fr	10,40333693	11,03694866
	Sp	11,40510220	11,11997603
	PT	14,44868226	14,02045064

Conclusions

> Translation quality

- > Improvement in translation output for Spanish/French/Portuguese
 - Romance languages are morphologically poorer than Russian,
 - > no significant word-order differences between English and Romance languages,
 - > Romance languages are more suitable for statistical approaches (SMT & Hybrid).
- > PPL rate reduction for all tested language pairs (except EF)
 - > translation output became more "human-like" after training, but expert evaluation did not always confirm the real quality enhancement.

Quality of training data

- Open source data are always very noisy but substantial cleaning/filtering provides better results.
- Subtitles are of especially bad quality,
- ➤ More tools and approaches for data cleaning needed.

Thank you for your attention!

Julia Epiphantseva

Head of Business Development Julia. Epiphantseva@promt.ru

